3.111 \(\int \frac{\sec ^2(c+d x)}{\sqrt{b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=67 \[ \frac{2 b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}} \]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*b*Sin[c + d*x])/(3*d*(b*Cos[c
 + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0514868, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {16, 2636, 2642, 2641} \[ \frac{2 b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*b*Sin[c + d*x])/(3*d*(b*Cos[c
 + d*x])^(3/2))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{\sqrt{b \cos (c+d x)}} \, dx &=b^2 \int \frac{1}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac{2 b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{1}{3} \int \frac{1}{\sqrt{b \cos (c+d x)}} \, dx\\ &=\frac{2 b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{\sqrt{\cos (c+d x)} \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 \sqrt{b \cos (c+d x)}}\\ &=\frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0640158, size = 48, normalized size = 0.72 \[ \frac{2 \left (\tan (c+d x)+\sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*(Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + Tan[c + d*x]))/(3*d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.994, size = 238, normalized size = 3.6 \begin{align*} -{\frac{2}{3\,d} \left ( -2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\frac{1}{\sqrt{-b \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) }}} \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x)

[Out]

-2/3*(-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*s
in(1/2*d*x+1/2*c)^2+(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)
/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)/(b*(2*
cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{\sqrt{b \cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{2}}{b \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c))*sec(d*x + c)^2/(b*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\sqrt{b \cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(b*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{\sqrt{b \cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)